

THE INTRODUCTION OF CIPR

Topics

- Introduction road base in road construction
- Production and construction of bound road base layer (in plant method)
- Production and construction of bound road base layer (in place method)
- Working process from A to Z
- How do we made the construction possible?
- Track records

Glossary	Description	Picture
Asphalt (premix or hot mix asphalt)	Mixture of aggregate, bitumen and other additive produce from hot asphalt plant for pavement / road construction	
Bitumen	Dark brown to black cementitious materials from distillation of crude oil in the refinery process.	
RAP or Milling waste	Reclaimed Asphalt Pavement (RAP) is the used or aged asphalt recovered from road via milling or excavate processes.	

Worldwide recognized 3R symbol

The universal recycling symbol is an internationally recognized symbol used to designate recyclable materials. It is composed of three mutually chasing arrows that form a Mobius Strip (an unending single-sided looped surface).

In 1969 and early 1970, worldwide attention to environmental issues culminated in the first Earth Day. Subsequent to that, the recycling symbol was designed by a 23-year-old student from the University of Southern California.

This recycle image now known as the universal recycling symbol is widely used to represent the Reuse, Recycle and Reduce (3R) concept. This 3R concept is now widely applied in road construction industry especially with regard to the pavement maintenance purpose.

Reuse, Recycle and Reduce (3R) of Asphalt in Road construction

WIRTGEN GROUP

Reuse, to reuse a material more than one time in a same function and purpose, typical example is reused of RAP in the hot mix asphalt.

Example :

Hot in-plant asphalt re-use (HIPR -in plant) : - RAP into fresh ACWC / ACBC.

Hot in-situ asphalt re-use (HIPR – in situ): - RAP into fresh ACWC. **Recycle**, breaking down of the used item into raw materials which are used to make new items. Typically example is recycle of RAP into road base material.

Example :

Cold in-plant asphalt re-use (CIPR -in plant) : - RAP into Bound Road Base.

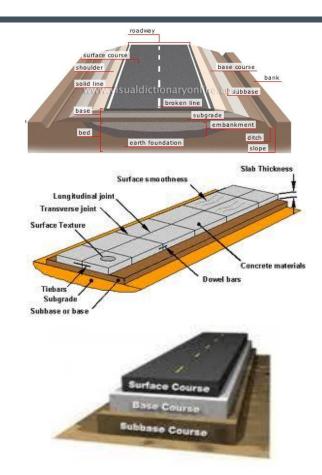
Cold in-situ asphalt re-use (CIPR – in situ):

- RAP into Bound Road Base.

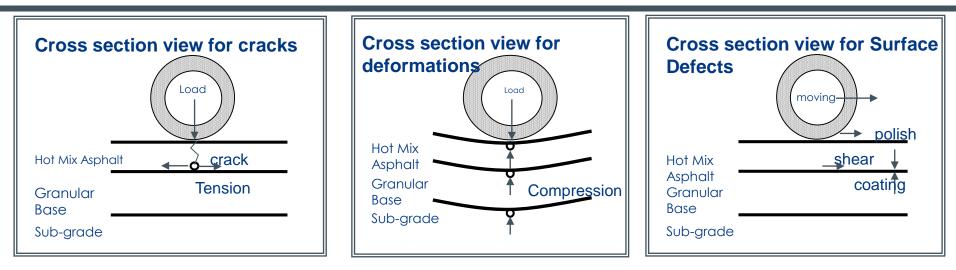
Reduce, the first and most effective component of the waste hierarchy is reducing the waste. Reduce is to use less and this means fewer resources are expended in making and disposing of the item.

Example :

Very Thin Overlay (VTO) of asphalt i.e. laying thinner asphalt with higher quality of materials


New road construction Road base in various type of pavements

WIRTGEN GROUP


Flexible pavements (unbound base)

Rigid pavements (bound or unbound base)

Composite pavements (bound base)

Road rehabilitation When do we select bound road base ?

Typical construction materials for flexible pavement

	HMA 1st layer and 2nd layer Wearing course layer and Binder course layer	Dense graded	Gap graded	Open graded	
		Asphaltic concreteCoated MacadamHot rolled asphalt	SMAThin surfacing	Porous asphalt	
	Road base layer	Unbound road base	Bound road base		
		 Crushed aggregate (crusher run) Uncrushed stone Wet mix macadam 	 Cement treated base (CTB) Bituminous stabilized material (BSM). 		
	Sub base layer	Unbound sub base			
		 Crushed aggregate (crusher run) Sand 			
	Subgrade (soil)	Soil stabilization			

Road base in road construction

The road base and sub base are the main structural element in the pavement. Its function is to distribute the imposed loading so that the underlying materials are not overstressed.

It must resist permanent deformation and cracking caused by fatigue through repeated loading. It must also capable of withstanding stresses induced by temperature gradients through the structure.

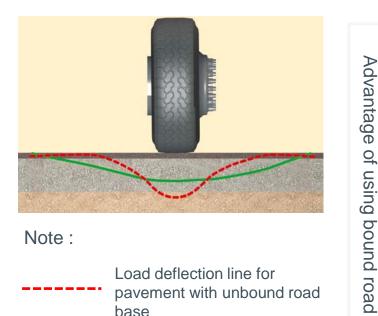
For light traffic =

an unbound granular base materials may be perfectly adequate. Materials such as sand and crushed rock are commonly used.

For heavy traffic =

Bound granular base materials added with imported bonding agents such as cement, bitumen, emulsion and chemical addition will increase the strength of material.

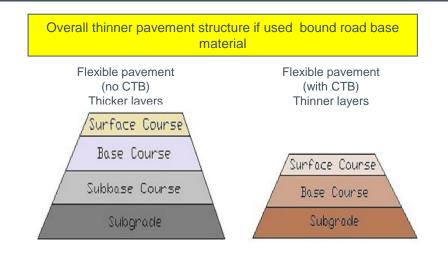
Choices of material selection in the road base construction



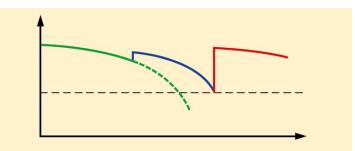
Typical cement application rates (percent by mass)				
Material type \ Target UCS value	<4 MPa	Up to 10 MPa		
RAP/crushed stone (50/50 blend)	2.0 to 3.0	3.5 to 5.0		
Graded crushed stone	2.0 to 2.5	3.0 to 4.5		
Natural gravel (PI < 10, CBR >30)	2.5 to 4.0	4.0 to 6.0		

Resilient Moduli ranges for BSMs after curing					
Material type	Bitumen Content of BSM (%)	Resilient Modulus MR(MPa)			
100% RAP	1.6 to 2.0	1,000 to 2,500			
RAP/crushed ston e (50:50 blend)	2.0 to 2.5	800 to 2,000			
Graded crushed stone	2.0 to 3.0	600 to 1,500			
Natural gravel (PI < 10, CBR>45)	2.0 to 3.5	400 to 800			
Natural gravel (PI < 10, CBR>25)	2.5 to 4.0	300 to 600			
Non-plastic sands	3.0 to 5.0	200 to 500			

Purpose of bound road base as pavement material


Note :

Load deflection line for pavement with unbound road base


> Load deflection line for pavement with bound road base

bas

Ô

Longer service life if used bound road base material

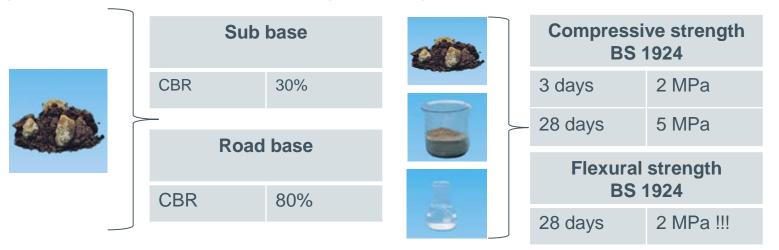
Production and construction of bound road base in Malaysia

Bound road base mixture can be produce in plant and as well as in situ (on site) by adding cement, foam bitumen, emulsion, water and other mineral materials depend to the recommendation in the mix design.

or

Option of materials :

- 1) 100% fresh crushed aggregate or
- 2) Recycle materials
- 3) Combination of 1 and 2.

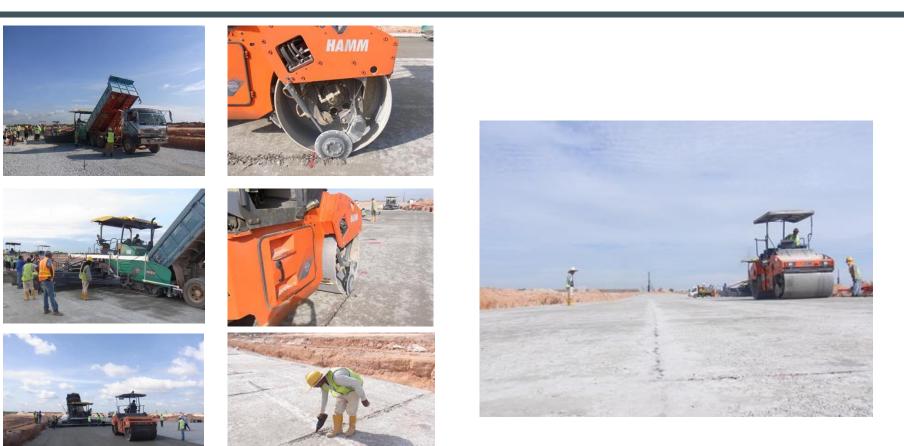


Production and construction of bound road base layer (in-plant method) (for new material or recycle)

Cement-Treated Base (CTB) is the most commonly used bound road base material in Malaysia.

CTB is an intimate mixture of aggregate material and/or granular soils combined with measured amounts of Portland cement and water that hardens after compaction and curing to form a durable paving material. A bituminous or Portland cement concrete wearing course is placed on the CTB to complete the pavement structure. CTB is widely used as a pavement base for highways, roads, streets, parking areas, airports, and materials handling and storage areas.

The production of CTB (in plant) by Wirtgen KMA 220


WIRTGEN GROUP

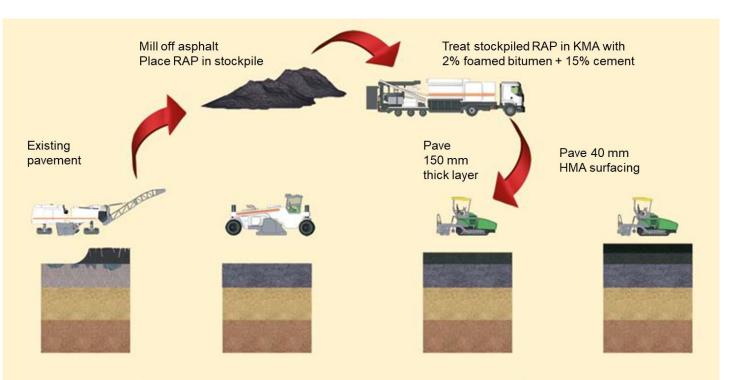
- Powerful diesel engine
- ² Large water tank

1

- ³ Large, twin-chamber proportioning hopper
- High-precision injection systems
- ⁵ Quick setup procedure
- ⁶ Slewing conveyor
- Auger conveyor including weighing unit
- 8 Hopper take-off conveyor including material weighing
- 9 High mixing performance
- ¹⁰ Ease of transport

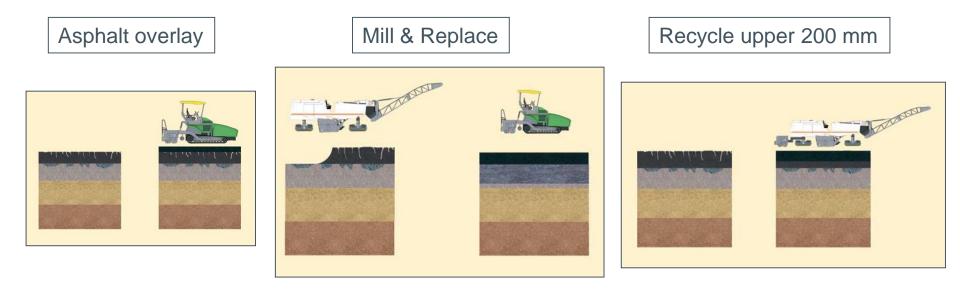
The laying of CTB

The curing of CTB and the final product



Other type of in plant bound road base

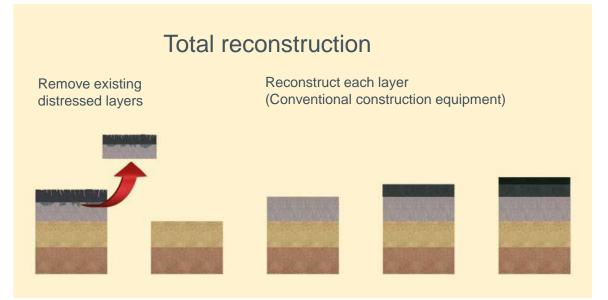
Foam bitumen or bitumen emulsion as additive Cold in plant recycling (CIPR-plant)



Production and construction of bound road base layer (in-place method) (fresh or recycle)

WIRTGEN GROUP

Surface rehabilitation measures address problems that are confined to the upper part of the pavement, usually within the top 50 mm to 100 mm. These problems are normally related to aging of bitumen and cracking that initiates at the surface due to thermal forces.


The most commonly used methods for dealing with this type of problem include:

Many roads found having high severity defects required total construction.

In many cases the repairs involved removal of surface courses and also the entire road base materials.

The cost to perform the total repair are significant and Cold In Place Recycle (CIPR-place) is the most famous option.

The most commonly use in situ bound road base concept in Malaysia

WIRTGEN GROUP

Cold in place pavement recycler (CIPR-inplace)

CIPR-place is the most famous method in road maintenance in Malaysia due to due to:

- Repair cost are relatively lower compare to conventional method via saving from transporting material in and out of work site.
- 2. Reuse the existing material which is still in good condition.
- 3. Cement and bitumen as additive is commonly selection to improve structural strength and pro long pavement's life.
- 4. Cement and bitumen is easily available.
- 5. Longer working window.

6. Fast open to traffic.

Recycle 250 mm deep

CIPR In situ at Malaysia

		JKR/SPJ/2008-S4
4.10	SPECIALTY MIX 5 - COLD IN-PLACE RECYCLING	
	4.10.1 Description	S4-90
	4.10.2 Materials	S4-90
	4.10.3 Mix design	S4-92
	4.10.4 Equipment	S4-97
	4.10.5 Construction Method	S4-99

CANANGAN JALAN, IBU PEJABAT JABADAN KERJA BADA, JALAN SULTAN SALAHADON, SUSBI KUALA UMPUR. KETUA PENGARAH KERUA BAIA JABATAN KERUA BAIA MALAPSIA, JALAN SUATAN SALAH DON, SOSE2 KUALA LUMPUR,

Working process from A to Z

Core extraction (bound layers)

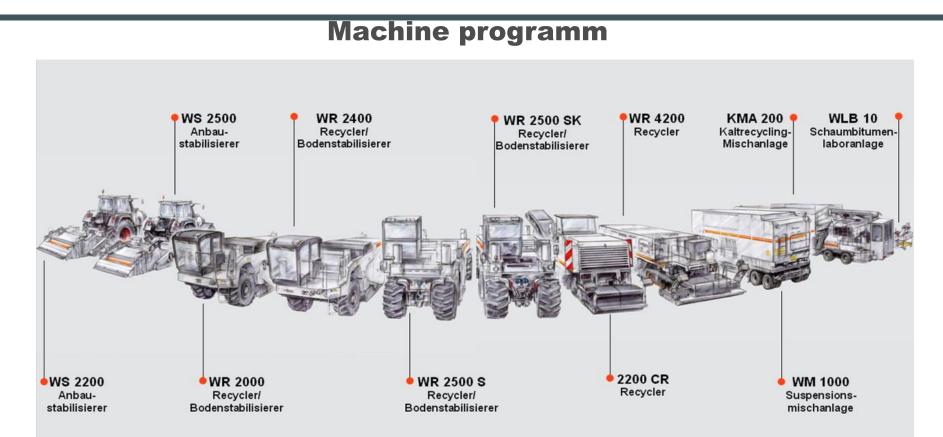
Perform DCP survey to evaluate existing material

Handle Upper Stop Hammer (8 kg) Cone dimensions 3 mm 🛱 Zero mark 575 mm Cone angle 60° →20 mm | ← Approx. 1935 mm Anvil where rods screw together Upper clip -reference point for scale . Steel rods, Ø 16 mm Measuring rod with adjustable scale Lower clip

Site pits if necessary

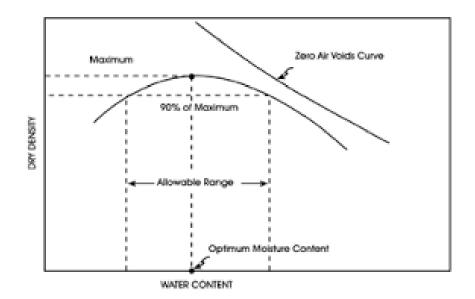
Laboratory test

Field tests



How do we make the construction possible ?

Correct type of Recycler



Accurate cement spreader

Back to basic, the compaction is extremely important

4.10.5.3 Compaction

(a) Initial Compaction

The recycled layer shall be initially compacted immediately, or as soon as any deficiencies are made good in accordance with Sub-Section 4.10.5 above. Initial compaction shall be undertaken by a smooth-drum or pad foot vibrating roller, operating on high-amplitude vibration. The static mass of the roller shall be selected in accordance with Table 4.10.7.

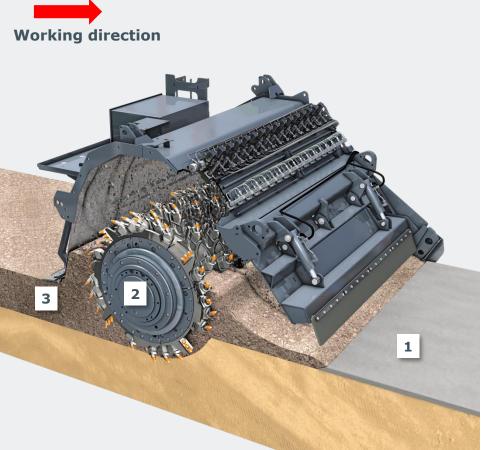
TABLE 4.10.7: MINIMUM STATIC ROLLER MASS

Thickness of compacted layer	Minimum static mass of roller (tonne)
< 150mm	12
150mm to 200mm	15
200mm to 250mm	19
> 250mm	24

<u>Note</u>: The operating speed of the primary roller shall never exceed 3km/hr and rolling shall be applied over the full width of each cut.

Choose wisely the compactor

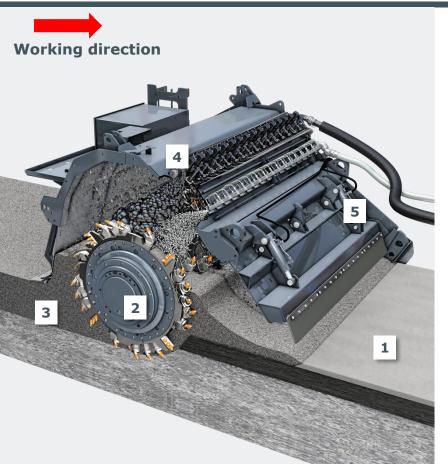
WIRTGEN GROUP


20mt compactor is crucial to provide deep penetration for full thickness compaction

15mt PTR is an option when kneading effect is required to provide good surface especially with foam bitumen CIPR

Operating principle of the WR soil stabilizer

WIRTGEN GROUP

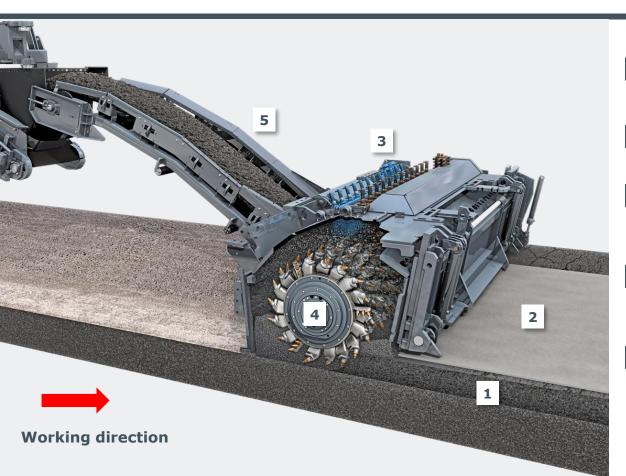

Soil stabilization

The milling and mixing rotor mixes the existing soil, any required amounts of pre-spread lime or cement and water to produce a homogeneous soilbinder mixture

- Pre-spread binder
- 2 Milling and mixing rotor
- Stabilized, homogeneous soilbinder mixture

Operating principle of the WR cold recycler

WIRTGEN GROUP



Cold recycling

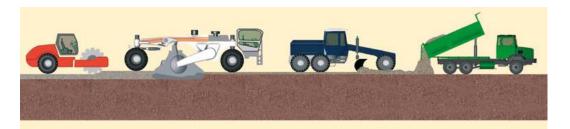
The milling and mixing rotor mills and granulates the asphalt layers. Binders and water are added via injection bars and mixed in to produce a homogeneous recycled material

- 1 Pre-spread cement
- 2 Injected water
- 3 Injected foamed bitumen
- 4 Milling and mixing rotor
- 5 Recycled, homogeneous construction material

Operating principle of the 3800 CR "Rear Load"

Damaged asphalt layer

WIRTGEN GROUP


2 Pre-spread cement

Injection bars for water and binders

 Milling and mixing rotor

 Conveyor for transfer of material to asphalt paver

Standard traditional construction processes

CIPR Cement bonding

CIPR Cement slurry and bitumen emulsion

CIPR Cement and foam bitumen bonding

New full width construction processes

Example of application using the W 240 CR / W 240 CRi Recycling with integrated paving screed

A

В

C

D

NOIO

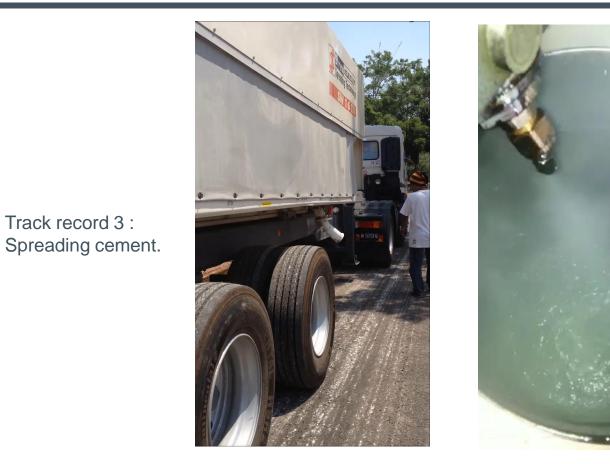
Example of application using the W 380 CR / W 380 CRi Recycling with loading conveyor and paver

Example of application using the W 240 CR / W 240 CRi / W 380 CR / W 380 CRi Lateral premilling and recycling with loading conveyor and paver

Example of application using the W 240 CR / W 240 CRi / W 380 CR / W 380 CRi Cold milling with discharge conveyor and truck

Track records

Local track record


Track record 1 : CIPR with OPC.

Track record 2 : CIPR with OPC by S pack.

Local track records

Track record 3 :

WIRTGEN GROUP

Track record 4 : Foam bitumen.

Laying of Asphalt

Other applications

WIRTGEN GROUP

Soil stabilization at peat area

Soil stabilization at subgrade level for highway

Soil stabilization at factory foundation

Crush hard shale

Thank you very much for your attention!